
From Zero to 1000 tests in 6
months

Or how not to lose your mind with 2
week iterations

Name is Max Vasilyev

Senior Developer and QA Manager

at Solutions Aberdeen

http://tech.trailmax.info

@trailmax

http://tech.trailmax.info/

Business Does Not Care

• Business does not care about tests.

• Business does not care about internal
software quality.

• Business does not care about architecture.

• Some businesses don’t care so much, they
even don’t care about money.

Don’t Tell The Business

Just do it!

Just write your tests, ask no one.

Honestly, tomorrow in the office just create new
project, add NUnit package and write a test.

That’ll take you 10 minutes.

Simple?

Writing a test is simple. Writing a good test is
hard.

Main questions are:

– What do you test?

– Why do you test?

– How do you test?

Our Journey: Stone Age

Started with Selenium browser tests:

• Recording tool is OK to get started

• Boss loved it!

• Things fly about on the screen
- very dramatic

But:

• High maintenance effort

• Problematic to check business logic

Our Journey: Iron Age

After initial Selenium fever, moved on to
integration tests:

• Hook database into tests and part-test
database.

But:

• Very difficult to set up (data + infrastructure)

• Problematic to test logic

Our Journey: Our Days

• Now no Selenium tests

• A handful of integration tests

• Most of the tests are unit-ish* tests

• 150K lines of code in the project

• Around 1200 tests with 30% coverage**

• Tests are run in build server

* Discuss Unit vs Non-Unit tests later
** Roughly 1 line of test code covers 2 lines of production code

Testing Triangle

GUI Tests

Integration Tests

Unit Tests

Unit Tests

Integration Tests

GUI Tests

Our Journey: 2 Week Iterations?

The team realised tests are not optional after
first 2-week iteration:

• There simply was no time to manually test
everything at the end of iteration.

ADD: Annoyance Driven Development

Bits of code annoy you?

FIX IT!

Annoyance is Bad

• Bad smells in code slow you down

• Frustrate you

• Other team members might come across the
same issues (so you can be frustrated
together!)

Placeholder for funny
picture about frustration

Some examples

• Namespacing in your Razor *.cshtml pages?
Take them to web.config

• Get latest changes from git/svn/tfs/hg/etc.
And you can’t build the project? Start using
build server

• Receive a ticket for “already-fixed” bug? Add a
regression test.

Fixed it yet?

• Do the fixing in the start of an Iteration

• Does it not affect anything? Do it now! Don’t
let it annoy you (or anybody else) anymore

• Fixing it might consume your time, but only
once. If not fixed, you’ll get annoyed again.

• And put a regression test so the problem does
not come back! (where applicable)

Unit Testing: Isolation Frameworks

• “Mock objects are simulated objects that
mimic the behaviour of real objects in
controlled ways”*

• You create mock object to isolate class under
test. You tell mock object to create situation
that you want to simulate.

* Wikipedia

Unit Testing: Isolation Frameworks

• Hand-crafted stubs and mocks

• Moq, Nsubstitute, Rhino Mocks, MS Fakes,
FakeItEasy, etc.

• Mocks fail your tests. Stubs keep them
running

• You verify against mocks

Dependency Injection

• Classes don’t create their dependencies

• Dependencies are given to classes

DI Principles

Dependency Injection Benefits

• Improves testability

• Improves application architecture

• Can do crazy things with DI container
– Adding decorators to implementations

– Multi-tenancy implementation

– Provide different implementations depending on
environment/conditions

– Lifetime management. “Singleton” is not a
pattern!

DI Container Example*

* With Autofac container. There are other good containers.

DI Container Registration Example

Back to Tests

If your classes grow with dependencies, tests are
getting boring and time-consuming

With many dependencies your tests become
bloated and a maintenance nightmare. And
nobody wants to write them anymore!

DI + Mocking = Automocking

• Automocking container is DI container
configured to give you mock objects as
dependencies

• Streamlines test-writing

• Tests are no longer broken with introduction
of a new dependency

• Can do crazy things with it: some objects are
mocked, some are real.

With Automocking:

Without Automocking

Autofixture*

• Test data generator

• Automocking container

• Takes care of NullReferenceExceptions

• Eliminates a lot of work in test setup

* By Mark Seemann

Autofixture Example: Data Generation

Autofixture Example: Automocking

Continuous Integration

• Developers are lazy

• Nobody run my tests

• Automation for the win!

• Every time you check in, tests are executed for
you

• Compilation + Test execution = Build Server

Build Server: Our Process

• Stylecop

• Scan JavaScript files for issues

• Check for elevated usernames/passwords in
config files

• Compile + Run Tests

• For nightly build add test coverage analysis

• Whoever breaks the build – gets to fix it and to
wear a Santa hat

• Don’t get latest or check-in if the build is broken

Build Server: Advantages

• Machine independence

• Static and dynamic analysis
(StyleCop, FxCop, nDepend, etc.)

• Saves a lot of time!

• Improves internal software quality

• Defects are identified and fixed quicker

Disadvantages: some developers play chicken and
don’t check-in for days

Build Server: Software

• TFS

– Need to have TFS licence

– Angle Brackets Tax

• TeamCity

– Free for small teams/projects

– Easy to configure

– Easy to use

• Many other CI Servers I have not tried

Reflection In Tests*

• Check if DI container can create instances of
all controllers in MVC project

• Check if DI controller can create instances of
all Command Handlers

• Check if all controllers depend only on
interfaces

• Check if all objects have no more than 5
dependencies

*Some examples available in my blog: http://tech.trailmax.info

Reflection In Tests

• Not a unit test? I don’t care!

• Not unit tests in strict meaning of “unit”

• High value tests

• Can be interpreted as a lot of unit tests
crammed into one execution

Reflection In Tests: Bad

• If you try to access/modify private member

• Breaks if internal implementation changes

• Your code is not testable – redesign!

One exception: if you are working with
restrictive framework and need to simulate
production conditions (i.e. HTTP request)

Books Review: DI

• Must read if you
already use DI

• Great starting point

• Sometimes can be
confusing for non-DI
person

• Heavy

• Simply great book

• Loads of examples

• Many concepts
explained

• Testing patterns

• Must read if just
starting with tests

Books Review: Unit Tests

• Great for managers

• A lot of principles
applied to business

• Concepts are
explained many
times over

• Read first half if
introducing CI in your
team

Books Review: CI

You are so awesome!
Can I work with you?

We are looking for a good
developer (or two) to join our
team

• C#, MVC4(5), SQL Server,
EF5(6), Azure

• VS2012(3), Resharper

Talk to me after for more details

Questions?
There is no such thing as a silly question!

